TUGAS SOFTSKILL : PENGANTAR KOMPUTASI MODERN #4


RANGKUMAN BIOINFORMATIKA




Disusun Oleh :

Nama : Boby Pardamean
Kelas : 4IA18
NPM : 51416457





Bioinformatika

Bioinformatika, sesuai dengan asal katanya yaitu “bio” dan “informatika” adalah gabungan antara ilmu biologi dan teknik informasi (TI). Sebagai suatu disiplin ilmu, bioinformatika merupakan kajian yang memadukan disiplin biologi molekul, matematika dan teknik informasi (TI). Bidang ini masih tergolong relatif baru sehingga masih banyak kesalahpahaman mengenai definisinya. Secara umum, bioinformatika dapat digambarkan sebagai segala bentuk penggunaan komputer dalam menangani masalah-masalah biologi. Tetapi dalam prakteknya, definisi yang digunakan lebih bersifat terperinci. Bioinformatika itu sendiri mempunyai pengertian suatu teknologi pengumpulan, penyimpanan, analisis, interpretasi, penyebaran dan aplikasi dari data-data biologi molekul. 
Ilmu bioinformatika lahir atas insiatif para ahli ilmu komputer berdasarkan artificial intelligence. Mereka berpikir bahwa semua gejala yang ada di alam ini bisa dibuat secara artificial melalui simulasi dari gejala-gejala tersebut. Untuk mewujudkan hal ini diperlukan data-data yang menjadi kunci penentu tindaktanduk gejala alam tersebut, yaitu gen yang meliputi DNA atau RNA. Perangkat utama Bioinformatika adalah software dan didukung oleh kesediaan internet dan server World Wide Web (WWW). Syarat utama yang harus dimiliki dalam bidang bioinformatika adalah keberadaan database. Database informasi dasar saat ini telah tersedia. Untuk database DNA yang utama adalah GenBank (Amerika Serikat). Sementara untuk protein, databasenya dapat ditemukan di Swiss-Prot (Swiss) untuk sekuen asam aminonya, dan Protein Data Bank (PDB) untuk struktur tiga dimensinya.
Pada awal perkembangan ilmu pengetahuan. Para pakar biologi molekuler, ahli biologi melakukan pengambilan data biologis dengan menggunakan eksperimen atau pendekatan lainnya. Data tersebut disimpan di dalam suatu database, struktur protein, dan data sekuen protein. Data yang masif tersebut tidak dapat dianalisa secara efektif karena keterbatasan manusia. Oleh karena itu, dibutuhkan ahli komputer untuk membantu kerja dari ahli biologi.
Sehingga dapat ditarik kesimpulan jika Bioinformatika adalah bidang ilmu yang mempelajari teknik komputasi dalam melakukan pengumpulan dan analisa data biologis kompleks. Biologi, ilmu komputer, matematika, dan statistika memiliki peranan penting di dalam bidang bioinformatika. Kehadiran bioinformatika tidak terlepas dari data biologi yang masif dan sulit dikelola secara manual sehingga menjadi tren penelitian di bidang biologi saat ini.

Bidang-Bidang Yang Terkait Dengan Bioinformatika
  • Biophysics
Biologi molekul sendiri merupakan pengembangan yang lahir dari biophysics. Biophysics adalah sebuah bidang interdisipliner yang mengaplikasikan teknik-teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society). Sesuai dengan definisi di atas, bidang ini merupakan suatu bidang yang luas. Namun secara langsung disiplin ilmu ini terkait dengan Bioinformatika karena penggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur membutuhkan penggunaan TI.

  • Computational Biology
Computational biology merupakan bagian dari Bioinformatika (dalam arti yang paling luas) yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel. Tak dapat dielakkan bahwa Biologi Molekul cukup penting dalam computational biology, namun itu bukanlah inti dari disiplin ilmu ini. Pada penerapan computational biology, model-model statistika untuk fenomena biologi lebih disukai dipakai dibandingkan dengan model sebenarnya. Dalam beberapa hal cara tersebut cukup baik mengingat pada kasus tertentu eksperimen langsung pada fenomena biologi cukup sulit. Tidak semua dari computational biology merupakan Bioinformatika, seperti contohnya Model Matematika bukan merupakan Bioinformatika, bahkan meskipun dikaitkan dengan masalah biologi.

  • Medical Informatics
Menurut Aamir Zakaria, pengertian dari medical informatics adalah “sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran, penemuan, dan implementasi dari struktur dan algoritma untuk meningkatkan komunikasi, pengertian dan manajemen informasi medis.” Medical informatics lebih memperhatikan struktur dan algoritma untuk pengolahan data medis, dibandingkan dengan data itu sendiri. Disiplin ilmu ini, untuk alasan praktis, kemungkinan besar berkaitan dengan data-data yang didapatkan pada level biologi yang lebih “rumit” –yaitu informasi dari sistem-sistem superselular, tepat pada level populasi—di mana sebagian besar dari Bioinformatika lebih memperhatikan informasi dari sistem dan struktur biomolekul dan selular.

  • Cheminformatics
Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute’s Sixth Annual Cheminformatics conference). Pengertian disiplin ilmu yang disebutkan di atas lebih merupakan identifikasi dari salah satu aktivitas yang paling populer dibandingkan dengan berbagai bidang studi yang mungkin ada di bawah bidang ini. Salah satu contoh penemuan obat yang paling sukses sepanjang sejarah adalah penisilin, dapat menggambarkan cara untuk menemukan dan mengembangkan obatobatan hingga sekarang –meskipun terlihat aneh–. Cara untuk menemukan dan mengembangkan obat adalah hasil dari kesempatan, observasi, dan banyak proses kimia yang intensif dan lambat. Sampai beberapa waktu yang lalu, disain obat dianggap harus selalu menggunakan kerja yang intensif, proses uji dan gagal (trial-error process).

Kemungkinan penggunaan TI untuk merencanakan secara cerdas dan dengan mengotomatiskan proses-proses yang terkait dengan sintesis kimiawi dari komponenkomponen pengobatan merupakan suatu prospek yang sangat menarik bagi ahli kimia dan ahli biokimia. Penghargaan untuk menghasilkan obat yang dapat dipasarkan secara lebih cepat sangatlah besar, sehingga target inilah yang merupakan inti dari cheminformatics. Ruang lingkup akademis dari cheminformatics ini sangat luas. Contoh bidang minatnya antara lain: Synthesis Planning, Reaction and Structure Retrieval, 3-D Structure Retrieval, Modelling, Computational Chemistry, Visualisation Tools and Utilities.

  • Genomics
Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom yang representatif.

  • Mathematical Biology
Mathematical biology lebih mudah dibedakan dengan Bioinformatika daripada computational biology dengan Bioinformatika. Mathematical biology juga menangani masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah tersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupun hardware. Bahkan metode yang dipakai tidak perlu “menyelesaikan” masalah apapun; dalam mathematical biology bisa dianggap beralasan untuk mempublikasikan sebuah hasil yang hanya menyatakan bahwa suatu masalah biologi berada pada kelas umum tertentu. Menurut Alex Kasman, secara umum mathematical biology melingkupi semua ketertarikan teoritis yang tidak perlu merupakan sesuatu yang beralgoritma, dan tidak perlu dalam bentuk molekul, dan tidak perlu berguna dalam menganalisis data yang terkumpul.

  • Proteomics
Istilah proteomics pertama kali digunakan untuk menggambarkan himpunan dari protein-protein yang tersusun (encoded) oleh genom. Ilmu yang mempelajari proteome, yang disebut proteomics, pada saat ini tidak hanya memperhatikan semua protein di dalam sel yang diberikan, tetapi juga himpunan dari semua bentuk isoform dan modifikasi dari semua protein, interaksi diantaranya, deskripsi struktural dari proteinprotein dan kompleks-kompleks orde tingkat tinggi dari protein, dan mengenai masalah tersebut hampir semua pasca genom. Michael J. Dunn, Pemimpin Redaksi dari Proteomics mendefiniskan kata “proteome” sebagai: “The PROTEin complement of the genOME“. Dan mendefinisikan proteomics berkaitan dengan: “studi kuantitatif dan kualitatif dari ekspresi gen di level dari protein-protein fungsional itu sendiri”. Yaitu: “sebuah antarmuka antara biokimia protein dengan biologi molekul”. Mengkarakterisasi sebanyak puluhan ribu protein-protein yang dinyatakan dalam sebuah tipe sel yang diberikan pada waktu tertentu –apakah untuk mengukur berat molekul atau nilai-nilai isoelektrik protein-protein tersebut– melibatkan tempat penyimpanan dan perbandingan dari data yang memiliki jumlah yang sangat besar, tak terhindarkan lagi akan memerlukan Bioinformatika.

  • Pharmacogenomics
Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi pada identifikasi dari target-target obat. Contohnya meliputi menjaring semua genom untuk penerima yang potensial dengan menggunakan cara Bioinformatika, atau dengan menyelidiki bentuk pola dari ekspresi gen di dalam baik patogen maupun induk selama terjadinya infeksi, atau maupun dengan memeriksa karakteristik pola-pola ekspresi yang ditemukan dalam tumor atau contoh dari pasien untuk kepentingan diagnosa (kemungkinan untuk mengejar target potensial terapi kanker). Istilah pharmacogenomics digunakan lebih untuk urusan yang lebih “trivial” — tetapi dapat diargumentasikan lebih berguna– dari aplikasi pendekatan Bioinformatika pada pengkatalogan dan pemrosesan informasi yang berkaitan dengan ilmu Farmasi dan Genetika, untuk contohnya adalah pengumpulan informasi pasien dalam database.

  • Pharmacogenetics
Tiap individu mempunyai respon yang berbeda-beda terhadap berbagai pengaruh obat; sebagian ada yang positif, sebagian ada yang sedikit perubahan yang tampak pada kondisi mereka dan ada juga yang mendapatkan efek samping atau reaksi alergi. Sebagian dari reaksi-reaksi ini diketahui mempunyai dasar genetik. Pharmacogenetics adalah bagian dari pharmacogenomics yang menggunakan metode genomik/Bioinformatika untuk mengidentifikasi hubungan-hubungan genomik, contohnya SNP (Single Nucleotide Polymorphisms), karakteristik dari profil respons pasien tertentu dan menggunakan informasi-informasi tersebut untuk memberitahu administrasi dan pengembangan terapi pengobatan. Secara menakjubkan pendekatan tersebut telah digunakan untuk “menghidupkan kembali” obat-obatan yang sebelumnya dianggap tidak efektif, namun ternyata diketahui manjur pada sekelompok pasien tertentu. Disiplin ilmu ini juga dapat digunakan untuk mengoptimalkan dosis kemoterapi pada pasien-pasien tertentu. Gambaran dari sebagian bidang-bidang yang terkait dengan Bioinformatika di atas memperlihatkan bahwa Bioinformatika mempunyai ruang lingkup yang sangat luas dan mempunyai peran yang sangat besar dalam bidangnya. Bahkan pada bidang pelayanan kesehatan Bioinformatika menimbulkan disiplin ilmu baru yang menyebabkan peningkatan pelayanan kesehatan.

Penerapan Bioinformatika untuk Diagnosa Penyakit Baru
Untuk penyakit baru diperlukan diagnosa yang akurat sehingga bisa dibedakan dengan penyakit lain. Diagnosa yang akurat ini sangat diperlukan untuk penanganan pasien seperti pemberian obat dan perawatan yang tepat. Jika pasien terinfeksi virus influenza dengan panas tinggi, hanya akan sembuh jika diberi obat yang cocok untuk infeksi virus influenza. Sebaliknya, tidak akan sembuh kalua diberi obat untuk malaria. Karena itu, diagnosa yang tepat untuk suatu penyakit sangat diperlukan. 
Selain itu, diagnosa juga diperlukan untuk menentukan tingkat kematian (mortality) dari suatu agent penyakit. Artinya, semakin tinggi angka kematian ini, semakin berbahaya agent tersebut. Angka ini dihitung dengan menghitung jumlah pasien yang meninggal (D) dibagi dengan jumlah total pasien pengidap penyakit tersebut (P) (=D/P). Pada kasus SARS, gejala yang muncul mirip dengan gejala flu, sehingga dari gejala saja tidak bisa dibedakan apakah dia mengidap SARS atau mengidap flu. Diagnosa ini penting karena akan menentukan tingkat keganasan suatu agent yang akan mempengaruhi kebijakan yang diambil terhadap penyakit tersebut.
Ada beberapa cara untuk diagnosa suatu penyakit. Diantaranya isolasi agent penyebab penyakit tersebut dan analisa morfologinya, deteksi antibodi yang dihasilkan dari infeksi dengan Teknik enzyme-linked immunosorbent assay (ELISA), dan deteksi gen dari agent pembawa penyakit tersebut dengan Polymerase Chain Reaction (PCR). Isolasi agent pembawa penyakit memerlukan waktu yang lama. Teknik ELISA bisa dilakukan dalam waktu yang pendek, namun untuk tiap-tiap penyakit kita harus mengembangkan teknik tersebut terlebih dahulu. Untuk pengembangannya ini memerlukan waktu yang lama. 
Yang banyak dan lazim dipakai saat ini adalah teknik PCR. Teknik ini simpel, praktis dan cepat. Yang penting dalam teknik PCR adalah design primer untuk amplifikasi DNA. Untuk mendesign primer ini diperlukan data sekuen dari genom agent yang bersangkutan dan software seperti yang telah diuraikan di atas. Di sinilah Bioinformatika memainkan peranannya. Untuk agent yang mempunyai genom RNA, harus dilakukan reverse transcription (proses sintesa DNA dari RNA) terlebih dahulu dengan menggunakan enzim Reverse transcriptase. Setelah DNA diperoleh baru dilakukan PCR. Dua step reverse transcription dan PCR ini bisa dilakukan sekaligus dan biasanya dinamakan RT-PCR.
Karena PCR ini hanya bersifat kualitatif, sejak beberapa tahun yang lalu telah dikembangkan Teknik Real Time PCR yang bersifat kuantitatif. Dari hasil Real Time PCR ini bisa ditentukan kuantitas suatu agent di dalam tubuh seseorang, sehingga bisa dievaluasi tingkat emergensinya. Pada Real Time PCR ini selain primer diperlukan probe yang harus didesign sesuai dengan sekuen agent yang bersangkutan. Di sini juga diperlukan software atau program Bioinformatika. 
Untuk penyakit SARS sendiri sekarang telah tersedia kit RT-PCR yang dikembangkan oleh Takara Bio Inc., dengan nama komersial CycleaveRT-PCR SARS virus Detection Kit. Selain itu Roche Diagnostics juga juga tengah mengembangkan kit untuk deteksi virus SARS. Keberhasilan pengembangan kit ini tidak terlepas dari didorong kemajuan Bioinformatika.
Sumber Artikel :





Komentar

Postingan populer dari blog ini

Pengertian 2D,3D,4D, Dan 5D Dalam Dunia Film

Alat-alat Penunjang Visual Modern

Tugas Poster : Poster Keselamatan Kerja